Technology Group

LowCVP Technology and Opportunities to Invest in Low Carbon Automotive

Tony Harper

23rd March 2010

NAIGT Organisation and Participants

Developing an Automotive Technology Strategy

Phase 1 (Nov-Dec '08)

- Develop a mutually agreed OEM "Product Roadmap" aimed at the reduction of passenger car CO₂ emissions in line with government targets
- Compile a high level Common Research Agenda to deliver the Product Roadmap

Phase 2 (Mar-May '09)

- Identify technical areas of existing UK strength, weakness and potential for future development
 - Identify the activities that should be a focus for R&D investment and make strategic recommendations to UK funding bodies, to maximise the benefit to UK plc

Product Road Map

Product Road Map

- OEMs share a common product technology roadmap and recognise the same technical and commercial barriers.
- Individual manufacturers will implement technologies which best address their own brand values and market sectors.
- In the near to medium term, improvement of conventional powertrains and transmissions can have a significant impact on fleet average CO2 by providing moderate benefits for a large proportion of the fleet.
- In the medium to longer term it is anticipated that a technology shift to alternative powertrains and transmissions will be required to achieve the CO2 reduction targets from transport. Supported by alternative fuel delivery including grid electricity and hydrogen.
- Both electrification and fuel cell vehicle technologies rely on the concurrent development of a "clean and sustainable" supply of energy

Common Research Agenda

	SHORT TERM	MEDIUM TERM	LONG TERM
	5 – 10 years from production	7 – 15 years from production	10 – 20 years from production
	INDUSTRY		
Propulsion	IC engine optimisation Boost systems for downsizing Flexible valve/actuation for engines/transmissions Low cost compact e-motors	Higher efficiency IC engines Capacitive boost systems All electric actuation systems Optimised range extender engine Lower cost e-motor Heat energy recovery (e.g. E-turbine)	 Super high efficiency motors (superconducting) New IC engines with 70%+ thermal efficiency Advanced heat energy recovery (e.g. thermoelectric) Motor/Fuel Cell materials
Energy Storage	 Improved quality / durability 200+ Wh/kg & \$800/kW/.h cost battery systems Low cost power electronics 	Next gen batteries 300+ Wh/kg and \$500/kW.h cost Flexible power elec. modules Other forms of energy recovery (mechanical/chemical etc)	 3rd gen batteries 400+ Wh/kg & \$200/kW.h cost New low cost solid state power conversion systems Hydrogen storage technology
Vehicle Efficiency	 Lightweight structures and interiors Low rolling resistance tyres / brakes 	New vehicle classes and configurations Combination of function to reduce weight / cost Minimised weight / losses	 Flexible re-configurable multi-utility vehicle concepts 50% weight reduction from 2008 Advanced aerodynamic concepts
System Control	 Information enabled control (Topology, V2V, V2I, traffic etc.) Optimised vehicle energy mgmt. Intelligent thermal management 	Advanced information enabled control Intelligent P/T and HVAC mgmt.	 Autonomous P/T and vehicle control integrated with active safety
Energy + Fuel Supply Processes	 Optimised 1st gen biofuels processes New 2nd gen biofuel processes Process + delivery tool development and connectivity 	Intelligent energy / re-fuelling infrastructure (e.g. fast charge) Industrial scale demonstration of new 2 nd gen biofuel processes Auto-optimisation methods using virtual systems	 3rd gen biofuel processes 2rd gen industrial scale biofuel production infrastructure Artificial Intelligence to deliver complex multi-criteria system optimisation
+ Tools	. ,		, , , , , , , , , , , , , , , , , , ,

Developing an Automotive Technology Strategy

Phase 3 (Jun-Oct '09)

- Automotive Technology Working Group "underground" activity to establish Technology Council direction
- Start process of identifying strategic technology direction for "Automotive UK plc"

Phase 4 (Nov '09 on)

- Establish Technology Group within Automotive Council
- Identify strategic technology direction for "Automotive UK plc"
- Set short term objectives to drive technology development towards the Product Road Map

Technology Working Group Members

Vehicle Manufacturers	Technology Specialists	Institutions
General Motors	Ricardo	SMMT
Nissan	Logica	TSB
Ford	Intelligent Energy	ETI
SAIC	BP	EPSRC
Toyota	GKN	Greater London Authority
Lotus Engineering	Mahle	Greater Manchester Auth.
Bentley	Millbrook	Cenex
Jaguar Land Rover	ARM Holdings	OLEV
ТАТА	Elektromotive	UKTI
Morgan	Infracharge	University of Bath
Optare	MIRA	BIS
Caterpillar	Axeon	Scottish&Southern Energy

Technology Working Group Mission

- Identify opportunities to provide a more compelling investment proposition for automotive R&D in the UK versus other countries
- Agree on the technology roadmaps for low carbon vehicles and fuels, and exploit opportunities to promote the UK as a strong candidate to develop these technologies
- Develop a stronger supply base through joint research on focused areas driven by a common agenda and by brokering collaboration opportunities

Principles for identifying priority activities

- What is needed for the UK to remain an important player?
- What do we continue doing?
- What do we need to start doing?
- Which technologies do we focus on?
- What do we see as the next big challenge?
- How do we get value added activity from the high ROI activities?
- Where do we need inward investment or external funding?

Test Bed UK Concept

Government – Local and central

Finance sector

Infrastructure Providers

Consumers

Automotive OEMs

> Academic & Technical Institutions

Suppliers

Test Bed UK

- To create a formal partnership mechanism between automotive manufacturers, infrastructure providers, regulators and consumers
- Business model innovation is at least as important as technology innovation
- Need to lead the development of new customer/user behaviours to get best out of new technologies
- Gives UK Ltd a voice in advanced technology development e.g. standards, regulations
- Potential to become skills centre
- Outlet for research institutes to demonstrate capability to industry
- UK transport market is distinct and separate from other European markets and so has the potential to lead Europe in development of new transport models
- Allows UK to collaborate with other global "demonstrator" projects
- Promotes partnerships that do not currently exist

UK Low Carbon Vehicle Demonstration 2009

Integrated approach promoted by TSB, ETI, OLEV, CENEX

Thank You